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Abstract

Evidence on the effect of extreme weather events or natural disasters on the risk of
armed conflict is mixed. I explain the pattern by arguing that disasters have het-
erogeneous effects on conflict risks and, consequently, systematically make empirical
evidence mixed. Specifically, I develop a model of conflict that focuses on the role of
political groups’ asymmetric resilience/vulnerability to disasters. It presents two con-
trasting equilibrium strategies arising from disaster-induced power shifts. In the first
case, where two groups have similar levels of resilience, one of them opportunistically
attacks its rival after a disaster if the latter incurred disproportionately severe damage.
Disaster events and conflicts are positively correlated. In the second case, where one
of the players is inherently more vulnerable to disaster risks, she attacks the relatively
resilient side preemptively before a disaster occurs. Here, disaster events negatively
correlate with conflicts. Based on the theory, this paper (i) draws a new empirical
implication and assesses it with the data of intrastate conflicts and droughts in African
countries and (ii) formally shows that the conditional average treatment effect (CATE)
of disaster events on conflict risks becomes negative in the second case, providing a
novel interpretation of why the evidence on climate conflict seems mixed.
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1 Introduction

The evidence on the effect of climate anomalies and natural disasters on the risk of violent

conflict is mixed. On the one hand, these events can threaten peace by generating resource

scarcity, opening a window of opportunity to exploit the affected group/country that is

temporarily vulnerable, and by reducing the opportunity costs of resorting to violent conflict

(e.g., Hsiang et al., 2013; Jun and Sethi, 2021; Roche et al., 2020). On the other hand, because

fighting an armed conflict requires belligerents to continually mobilize material resources,

climate shocks can rather reduce the risk of conflict by undermining groups’ mobilization

and their war-fighting capabilities (Devlin and Hendrix, 2014; Salehyan and Hendrix, 2014).

Moreover, some studies report little effects of climate factors on the risk of conflict and find

that the positive correlation between them is sensitive to the definition of armed conflict

(Buhaug, 2010; Theisen et al., 2011). Mach et al. (2019) also report divergent views among

researchers. Hence, it seems plausible to state that there does not exist a wide consensus

over the effect of natural disasters and climate events on the risk of armed conflict. Why is

the empirical evidence mixed? If natural disasters can lead to armed conflict, when do they

cause wars?

One possible root of the mixed results is that there exist problems with measurements

or the methodology used in some studies in the literature. Namely, it might be possible

that there exists the true mean effect of climate events on conflict and that one wing of the

debate is “correct” and others are not. For example, Hsiang et al. (2013) and Hsiang and

Burke (2014) report a “remarkable convergence” in the literature and suggest the presence of

a general positive relationship between climate variabilities and conflict risks. On the other

hand, Buhaug et al. (2014) point out the arbitrariness in their meta-analysis and find that

a replication of Hsiang et al. (2013) leads to divergent results. Salehyan (2014) frames the

disagreement as conceptual and empirical problems. This paper aims to conceptually and

theoretically contribute to the empirical literature.
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Instead of attempting to identify and measure the general effect of climate anomalies

on conflicts, this paper focuses on another possibility. Namely, the empirical results in the

literature may be divergent because natural disasters affect the risk of conflict in multiple

ways and such heterogeneous effects systematically make the evidence mixed. That is, the

theory presented in this paper allows disasters to be positively associated with conflicts in

some cases and negatively associated in others. A game-theoretic model shows that two types

of contrasting strategy profiles constitute the unique equilibrium in a broad set of parameter

values and that these opposing results arise from a single theoretical dynamic: rapid shifts

in power between rival political groups. I briefly preview the two strategic logics in the

equilibrium below.

Key concepts that drive the contrasting results are realized and expected asymmetric

exposure to natural disasters. It is plausible to assume that the severity of a certain disaster

to different political groups varies. We focus on two sources of such variations in damage

from extreme climate events. First, some groups incur disproportionately higher costs than

others from a natural disaster that has just occurred. Because most natural disasters cause

more severe damage to particular areas (e.g., damages from hurricanes depend on each one’s

course), one group that has incurred only a small cost from a disaster may happen to be

temporarily advantaged over its political rival group. Consequently, the former group can

commit opportunistic aggression against the latter after an extreme weather event as a result

of the realized asymmetric exposure to it.1

Second, damage from a disaster is expected to vary along with the geographical and

social resilience of a political group.2 Some groups in a coastal area may expect to incur

disproportionately high costs from tsunamis and hurricanes. Other groups, such as farmers

or pastoralists, may also anticipate that they would be more vulnerable to droughts and

1See Kikuta (2019) for an empirical discussion based on post-disaster dynamic commitment problems.
Jun and Sethi (2021) also find that natural disasters increase the probability that affected groups are invaded
by their rivals.

2Note that this paper is not the first to point out this dynamic. It draws on and substantially extends
the concept developed by Bas and McLean (2021).

3



floods than their rival groups. Such groups that are inherently more vulnerable than their

political rivals due to the expected asymmetric exposure to an extreme weather event can

have a preemptive motive to attack an opponent before a devastating disaster occurs because

they know that they will be highly vulnerable once the damage of the event materializes.

An important implication drawn from the above two mechanisms is that (i) the actual

occurrence of a disaster and armed conflict should be positively correlated in the first equi-

librium (because war follows the asymmetric post-disaster balance of power) but (ii) they

should be negatively associated in the second (because war erupts in the absence of a disas-

ter). Moreover, based on assumptions drawn from the game-theoretic model, I show that the

causal effect of disasters on conflict in the sense of the conditional average treatment effect

(CATE) becomes negative in the second case. This observation provides a novel theoretical

interpretation of why the empirical evidence on climate conflict looks mixed.Namely, I argue

that overlooking the second mechanism (i.e., war caused by expected asymmetric exposure to

disasters) may lead researchers to underestimate the true conflict-inducing effect of climate

anomalies and other natural disasters.

1.1 Intuition

To further facilitate the intuition of the two different types of equilibrium outcomes discussed

in the model section, here I present two informal illustrations.3 As common assumptions,

suppose that (i) a climate disaster occurs with a certain probability; (ii) the region that a

disaster hits most severely is also randomly determined; (iii) disasters lower political groups’

military capabilities because they can directly damage military assets and have negative

impacts on power projection capabilities by destroying infrastructures; and (iv) the affected

political groups will eventually recover from the costs of a disaster. The two cases below

differ in only one aspect: the level of (a)symmetry in expected exposure to disasters.

3The following cases correspond to case (R), i.e., Case 1 below, and cases (E1) and (E1), i.e., Case 2 below,
respectively.
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Case 1 (Opportunistic aggression after a disaster). Consider two rival political

groups, Group 1 and Group 2. They can be two sovereign states or different groups in a

single country. Assume that the groups are geographically proximate and have similar levels

of economic development, military capabilities, and resilience in social infrastructures. To

make a comparison with Case 2 below easier, assume that both of them are in a disaster-prone

region. If a natural disaster takes place, the two groups are expected to incur similar costs

on average because they are equally vulnerable. We say that Groups 1 and 2 face symmetric

exposure to disaster risks.

Now suppose that an extreme weather event hits the area in which Groups 1 and 2

are located. Further, because the distribution of damages arising from natural disasters is

random, assume that Group 2 incurred disproportionately large costs and that the disaster

did not cause large damage to Group 1. Recall the assumption that a disaster negatively

affects groups’ military capabilities. Because the disaster happened to hit Group 2 severely,

Group 1 would find itself temporarily advantaged militarily. In this case, Group 1 can have

the incentive for opportunistic aggression before Group 2 recovers.For later use, observe that

this opportunistic conflict should erupt right after a disaster occurs in this case.

Case 2 (preemptive war before a disaster). Next, consider a different pair of hostile

political groups, Group 1 and Group 2’. We think of Group 1 as located in the same location

as Case 1. On the other hand, unlike Case 1, Group 2’ is in a distant region and inherently

more resilient to climate anomalies than Group 1 is. Because Group 1 is relatively more vul-

nerable to extreme weather events, we say that the groups face asymmetric risks of exposure

to disasters. Suppose that Group 2 in Case 1 and Group 2’ have identical attributes other

than resilience to disaster risks.

In contrast to Case 1, consider a period of time when there is no disaster in the area.

Group 1 knows that it is disproportionately vulnerable to disaster risks compared to its

political rival, Group 2’. Thus, it anticipates that it can incur severe disaster costs in the
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Figure 1: Conflict-prone conditions in the two illustrative cases

future. Further, Group 1 expects that Group 2’ may commit opportunistic aggression when

a disaster erupts and the military balance of power rapidly shifts in favor of Group 2’.

Predicting this risk, Group 1 has a preemptive motive to attack Group 2’ before it actually

incurs severe disaster costs.

Contrasting the two cases. Figure 1 highlights the contrast between them. The

squares represent the regions in which Groups 1 and 2 or 2’ are located. Groups 1 and 2 are

geographically proximate (Case 1) and 1 and 2’ are distant (Case 2). That is, Groups 1 and

2 face similar disaster risks, whereas Group 1 is inherently more vulnerable than Group 2.

The solid arrows outside the square region denote the materialized disaster costs (Case 1)

and the dashed ones represent expected damages imposed by future disasters (Case 2). The

line widths of the arrows indicate the asymmetry of the damages.

We can consider such (a)symmetry in exposure risks to disasters as distributions of ran-

dom variables. Suppose that a random variable Z with density f1(Z) (Case 1) and f2(Z)

(Case 2) determines the relative disaster damage on the two groups, where a smaller (larger)
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value represents a greater disaster cost on Group 1 (2 or 2’). As Figure 1 illustrates, the

distribution is symmetric in Case 1, whereas it is skewed in Case 2. In Case 1, because the

expected disaster costs are roughly symmetric between the two groups, they do not have the

preemptive motive in the absence of a disaster. However, because Z is random, it can be

the case that its particular realization happens to be extreme. War is possible only in this

circumstance in Case 1.

On the other hand, the graph of f2(Z) is skewed (Figure 1). The density being larger

for smaller Z indicates that Group 1 is more likely to incur severe damage from a disaster.

Note that a conflict can still erupt right after an extreme climate event in this case as well.

Nonetheless, because the relative disaster-related costs are randomly determined, a war may

not ensue after it. Namely, if a particular weather event happened to impose roughly equal

costs on the two rival groups, neither of them finds itself temporarily (dis)advantaged in

terms of the military balance of power. In contrast, in the simple example of Case 2, Group

1 attacks Group 2’ with probability one in the absence of a disaster because the former

knows that f2(Z) is skewed: in expectation, it will likely be militarily weaker in the future.

Consequently, although conflict onset is possible in Case 2 both when a disaster has occurred

and when it has not, war is strictly more likely in its absence.

This leads to an empirical implication. Suppose we want to estimate the effects of disasters

on violent conflict with data on the timing of extreme weather events and conflict onsets. It

is straightforward that the correlation between extreme climate events and conflicts should

be positive in Case 1. On the other hand, it should be negative in Case 2 because the

vulnerable group is strictly more likely to fight in the absence of such events. However, as

Case 2 shows, the expected asymmetric exposure to disasters is responsible for conflict onset.

Namely, disasters trigger conflict in both cases. Hence, failure to incorporate the dynamic

in Case 2 might lead to underestimation of the conflict-inducing effects of natural disasters.

The model presented below illustrates the core logic above more formally.
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1.2 Related Literature

This study contributes to the growing literature on extreme weather events and armed con-

flict.4 In particular, I draw on the findings of a recent paper by Bas and McLean (2021) that

the expectations of natural disasters can induce preemptive attacks and that conflicts are

associated with disaster risks. While I draw on their notion of the expected effects of natu-

ral disasters, the model presented here differs in important ways. First, it allows recurrent

disasters and recovery of the economy after them. Second, it also models the asymmetry in

disaster costs as a random variable. These extensions make the disaster expectation mecha-

nism a special case generated by a single model, which enables us to take the findings of Bas

and McLean (2021) one step further and theoretically explain the source of mixed empirical

results.

Both Roche et al. (2020) and this study extend Chassang and Padró i Miquel (2009).

Whereas Roche et al. (2020) investigate the impact of changes in the distribution of rainfalls

and economic shocks as a result of climate change, they assume that players share the same

severity of those shocks. In contrast, the present model incorporates the asymmetry in

exposure to negative resource shocks. Ide (2023) also focuses on the multiple effects of

disasters on armed conflict. While he qualitatively assesses disasters’ impacts on the intensity

of ongoing conflicts, I develop a game-theoretic model that explains the empirical results that

might seem to contradict ostensibly.

The model is also related to the literature on costly conflicts due to dynamic shifts in

power (e.g., Fearon, 2004; Krainin, 2017; Powell, 2004, 2006). A recent model by Little and

Paine (2023) is of particular relevance. By assuming that, as with the present model, the

probability that one group wins in war is randomly drawn each period, Little and Paine

(2023) distinguish the sources of the threat of a challenger group into (i) the maximum

probability of the challenger’s victory in war and (ii) its mean (or the probability of the

4For review, see Buhaug and von Uexkull (2021); Burke et al. (2015); Koubi (2019). Jun and Sethi (2021);
Kikuta (2019) examine the opportunistic aggression caused by natural disasters.
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challenger being “strong”), and show that the combination of a larger maximum challenger

threat and a smaller average threat is most prone to conflict.5 This paper departs by further

distinguishing opportunistic and preemptive attacks. In the former, war occurs under a shock

to the balance of power (i.e., disaster) when one player finds herself temporarily advantaged

militarily. In the latter, players can also fight in the absence of a shock if one player is

inherently vulnerable to it and has a preemptive motive to fight. The coexistence of the

two distinct types of conflict enables us to systematically explain why some empirical studies

find positive correlations between extreme weather events and conflict and others discover

negative ones.

More broadly, this paper is related to the growing movement of Theoretical Implications of

Empirical Models (TIEM). The TIEM approach aims to theoretically comprehend empirical

findings (e.g., Bueno de Mesquita and Tyson, 2020; Slough, 2023, 2024; Wolton, 2019, 2021).

One can situate the present paper in this literature in that, based on the theoretical model

presented below, it proposes a new interpretation of the mixed empirical evidence on the

causal effects of natural disasters and extreme weather events on violent conflict. It also

points out the possibility that some empirical approaches, including the potential outcome

framework that estimates the average treatment effect or the conditional average treatment

effect of natural disasters on conflict, might not always be suitable if those events generate

rapid shifts in military power.

The remainder of this paper proceeds as follows. After formally presenting the two op-

posing cases by developing a simple infinite-horizon game, I draw a new empirical prediction

from the model and assess if it explains patterns in data on armed conflicts and water scarcity

in African countries. Next, I point out that the potential outcome framework might underes-

timate the effect of disasters on conflict risks. Then, based on this implication, I revisit the

case of drought to reinterpret the seemingly contradictory results of some existing studies.

5See also Benson and Smith (2023); Sawada (2024) for a similar dynamic, where the source of power shifts
is external intervention. On the other hand, Smith (2019) develops a model in which such fluctuations in the
balance of power are mitigated by arms transfers from an ally.
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2 The Model

This paper develops a simple infinite horizon game that incorporates the two contrasting types

of asymmetry in exposure to disasters. A key feature is that asymmetric risk in exposure is a

necessary condition for conflict in the model. Thus, war on any equilibrium path is triggered

by the actual occurrence or expectation of natural disasters that can impose disproportionate

damage on one of the players.

2.1 Setup

Two players (e.g., rival political groups in the context of domestic conflict or neighboring

states in the context of interstate conflict) 1 and 2 interact each period t = 1, 2, .... Both

groups have a fixed amount of resources, θ. At the beginning of each period, Nature deter-

mines the presence/absence of a natural disaster as a draw of an identically and independently

distributed random variable D following a Bernoulli distribution with mean π: in each t, a

disaster occurs (i.e., Dt = 1) with probability π and does not (i.e., Dt = 0) with probability

1−π.6 We model asymmetric exposure to a disaster as another independently and identically

distributed random variable Z over the unit interval with mean µ. Suppose that Z follows

a distribution with a continuously differentiable cumulative distribution function F whose

density is f . In a disaster period t, the materialized value of Zt, denoted as zt, discounts (i)

the resources of Player 1 to ztθ and (ii) those of Player 2 to (1− zt) θ. Namely, after Dt = 1,

Nature determines the level of asymmetry in the damage imposed on each player.

After Nature’s moves, players simultaneously decide whether to attack the other or not.

In this model, we assume that a conflict is a unilateral act: war ensues when at least one

player chooses to fight. If neither player fights, players receive a flow payoff equal to the

amount of their wealth in the period (θ when there is no disaster or ztθ and (1− zt) when a

6We call the period in which a natural disaster has occurred a “disaster period.” Similarly, we label a
period without a disaster as a “no-disaster period”.
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disaster has erupted in the period), and the game proceeds to the next period.

When either player attacks the opponent, a game-ending war ensues. Its outcome is

determined by the amount of players’ resources: the probability that player i wins a war is

p¬di ≡ θ

2θ

=
1

2
(when a disaster did not occur); or

pd1 (Zt) ≡ Ztθ

Ztθ + (1− Zt) θ

= Zt (when a disaster occurred in t) and

pd2 (Zt) ≡ 1− pd1 (Zt)

= 1− Zt.

Because a war is costly, it discounts the amount of resources in the society by c ∈ (0, 1):

the remaining resource is θ(1 − c) or 2θ(1 − c) when war erupts in disaster and no-disaster

periods, respectively. If a war ensues, the game ends and the winner receives all remaining

resources in the society in the current period (θ(1− c) or 2θ(1− c)) and a long-term benefit

from its dominance over resources. By a long-term benefit, we mean that the victor gains the

entire pie 2θ that can be discounted in half with probability π for infinitely many periods.

Formally, the long-term payoff from dominance is:

V ≡ ED,Z

[
∞∑

t=1

δt−1 (Dt (Ztθ + (1− Zt) θ) + (1−Dt) 2θ)

]

=
∞∑

t=1

δt−1 [πθ + (1− π) 2θ]

=
θ(2− π)

1− δ
,

where δ ∈ (0, 1) is a common discount factor.

Figure 2 summarizes the timeline of the game. We assume complete information. To focus
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Nature draws (Dt, Zt)

Period t −→
Attack or not (simultaneous)

Either attacks

Game ends

Neither attacks
(Dt+1, Zt+1)

t+ 1 −→

Figure 2: Timeline

on interesting cases in which disasters affect players’ equilibrium strategies, we introduce the

following assumption which excludes trivial equilibria such as one in which players attack the

opponent after any history.

Assumption 1. Players do not attack the other one when they are indifferent between

attacking and not attacking.

This assumption also enables us to focus on pure strategies. Moreover, we introduce another

assumption to render the model tractable.

Assumption 2. Consider a pair of different distributions of Zt. Then, we assume that they

are identical except for one parameter.

For example, in numerical examples in the next section, I use Zt ∼ Beta(α, constant) and

vary the value of α, fixing the type of distribution and one of the two parameters. Our

solution concept is pure-strategy (stationary) Markov perfect equilibrium (MPE).7 That is,

a strategy in this model is a mapping from the state space {0, 1} × [0, 1] to the action space

{Attack, Not}.

2.2 Comments on the Model

Before analyzing the model, it is useful to discuss the interpretations of its key features.

First, the parameter µ ≡ E [Z] represents the expected asymmetry in players’ exposure to

7Whereas we focus on MPE in the analysis section, we use subgame perfect equilibrium for the preliminary
results (Remarks 1 and 2) presented below.
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the disaster. More specifically, it captures the region-specific vulnerabilities that amplify the

costs caused by natural disasters. For example, coastal areas may be more vulnerable to

hurricanes (due to storm surges) and post-earthquake tsunamis. Some mountainous regions

may also face a higher risk of landslides after excessive rainfall or earthquakes. In the model,

µ close to 1/2 implies that the two groups have similar vulnerabilities to natural disasters. On

the other hand, a small or large value of µ means that one of the players is more vulnerable

to climate risks. A specific draw of Zt, i.e., denoted as zt, represents the realized asymmetric

exposure to a disaster, which varies depending on which region the disaster hits most severely.

Second, disasters matter militarily by shifting the balance of power between players. This

process takes place through the following two steps. First, the realized damage of a disaster

zt discounts the players’ resources. Second, the affected amounts of resources determine the

outcome of conflict via the probability of victory pdi (zt), which is either zt or 1− zt.

Third, in order to examine the possible causal paths from natural disasters to armed

conflict, the possibility of a disaster with asymmetric negative impacts is a necessary condition

for war in this model. That is, as the following two results show, the game always proceeds

peacefully without (i) the risk of natural disasters and (ii) asymmetric exposure to them.

Remark 1. Suppose π = 0. Then, under Assumption 1, the unique subgame perfect equilib-

rium (SPE) is a strategy profile where both players never attack the opponent.

Remark 2. Suppose π ∈ (0, 1) but zt = 1/2 for any t. That is, the damage from a disaster

is always symmetric. Then, under Assumption 1, the unique SPE is a strategy profile where

both players never attack the opponent.

These results are straightforward. Consider Remark 1. Because war is costly and there

is no asymmetric information or a sudden power shift, a unilateral attack cannot be optimal

after any history, which is in line with standard models of armed conflict (Fearon, 1995). The

logic behind Remark 2 is also intuitive: the complete symmetry in exposure to a disaster
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prevents the temporary advantage that incentivizes aggression.8 The model in which war

can occur only under some risk of natural disasters with asymmetric exposure allows us to

theoretically identify the effects of those extreme events on the risk of armed conflict.

Fourth, the assumption that the distribution F and, in particular, its mean µ are common

knowledge establishes a scope condition of this model. Namely, we focus on relatively foresee-

able disasters because the assumption implies that players can evaluate and take into account

future disaster risks. Examples include seasonal climate anomalies such as storms, floods,

and droughts. On the other hand, other natural disasters that are difficult to anticipate,

including earthquakes, are beyond the scope.

Fifth, the negative impact of disasters on social welfare is fixed. Namely, any extreme

weather event always halves resources in the society composed of players 1 and 2. While the

distribution of discounted resources varies according to Zt, a disaster cannot make the total

amount of resources more or less than 1/2. This simplifying assumption makes clear how

asymmetric exposure to extreme weather events, rather than their magnitude itself, affects

players’ incentive for maintaining intergroup peace and gambling on a costly war.

3 Analysis

This section presents two different equilibria in which realized and unrealized (expected)

asymmetric costs of natural disasters cause armed conflict. The disproportionate vulnera-

bility to natural disasters has two opposing effects depending on whether (i) the cost of a

disaster has actually materialized following its outbreak or (ii) a disaster is expected in the

future but has not occurred yet. In the first case, a player can attack the other to exploit

the opponent’s temporary vulnerability arising from the latter’s disproportionate damage of

8In the model of Chassang and Padró i Miquel (2009), war erupts under symmetric economic shocks
because they assume the presence of offensive advantage: if only one player launches a unilateral attack, her
probability of victory is greater than 1/2, which renders the outcome more conflict-prone. The war outcome
in the present model is determined by the asymmetry in resources rather than by who started the war.
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a disaster in the current period. In the second case, a player has the incentive to fight in

a no-disaster period when she expects she will become disproportionately vulnerable in the

future.

3.1 War Caused by Realized Disproportionate Damage

First, I present an equilibrium in which a conflict erupts as a result of opportunistic aggression

by a player who is temporarily advantaged in a disaster period. To derive the equilibrium,

we consider the following stationary strategies:

(R-I): In a disaster period, i.e., t such that Dt = 1, either one of the players attacks the other

if the realized cost of the disaster is disproportionately incurred.

– When zt is larger than a threshold zR(µ) given µ, Player 1 attacks 2.

– When zt is smaller than a threshold zR(µ) given µ, Player 2 attacks 1.

(R-II): In a no-disaster period, i.e., t such that Dt = 0, neither player fights.

Slightly abusing notation, we often write the threshold values as zR and zR instead of zR(µ)

and zR(µ), which are functions of µ as we discuss below.

When we assume the players follow the above strategies, on the equilibrium path, a war

occurs if the damage inflicted by a disaster in the current period is highly asymmetric. The

following result specifies the condition under which they are an equilibrium.

Proposition 1 (Realized asymmetric exposure). Consider an interval MR ≡
[
µR, µR

]
, where

the thresholds µR and µR are defined below. When µ ∈ MR, the strategies (R-I) and (R-II)

constitute an MPE.

• Given µ ∈ MR, the thresholds above/below which one player attacks the other when
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Dt = 1 are given as the solution to the following system of equations.





zR(µ) = δ ·
(1− π) + π

(
µ+

(∫ zR(µ)

0

zdF (z) +

∫ 1

zR(µ)

zdF (z)

)[
δ
2− π

1− δ
− c

])

(
1− δ

(
1− π

(
1−∆F

(
zR(µ), zR(µ)

)))) [
δ
2− π

1− δ
− c

]

zR(µ) = 1− δ ·

(1− π) + π


1− µ+



1−∆F

(
zR(µ), zR(µ)

)

−
(∫ zR(µ)

0

zdF (z) +

∫ 1

zR(µ)

zdF (z)

)



[
δ
2− π

1− δ
− c

]



(
1− δ

(
1− π

(
1−∆F

(
zR(µ), zR(µ)

)))) [
δ
2− π

1− δ
− c

] ,

(1)

where ∆F (b, a) ≡ F (b)− F (a) with a ≤ b.

• The maximum and minimum of MR are, respectively, given as part of the solution to a

system of three equations composed of each of the following equations and two equations

in (1) with µ = µR or µ = µR.

µR =
1

2
+ δ

2− π

1− δ

(∫ zR(µR)

0

1

2
− zdF (z) +

∫ 1

zR(µR)

1

2
− zdF (z)

)

+c

(∫ zR(µR)

0

zdF (z) +

∫ 1

zR(µR)

zdF (z) +
1− δ

δπ

)
and

µR =
1

2
+ δ

2− π

1− δ

(∫ zR(µR)

0

1

2
− zdF (z) +

∫ 1

zR(µR)

1

2
− zdF (z)

)

−c

(∫ zR(µR)

0

1− zdF (z) +

∫ 1

zR(µR)
1− zdF (z) +

1− δ

δπ

)
.

We denote this equilibrium by (R). Note that war can erupt only in disaster periods on the

equilibrium path. That is, peace sustains as long as extreme asymmetry in players’ resources

does not arise from a natural disaster. Conversely, war occurs when highly disproportionate

exposure to an extreme weather event generates an opportunistic motive of the temporarily

advantaged player. Thus, the equilibrium probability of conflict is (i) zero in a given no-

disaster period and (ii) positive in a disaster period.
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This result is intuitively straightforward. When µ is in the interval MR, unlike the sec-

ond case presented below, the players’ inherent resilience to natural disasters is relatively

symmetric. This means that the military parity between the players is likely to remain even

if a disaster occurs. Because, on average, the military parity is not likely to fluctuate un-

der an extreme weather event, neither player obtains a temporary military advantage (and

opportunistic motive for war) unless such a balance is disturbed by a disaster that imposes

disproportionately high costs on one of them. We shall come back to this point to compare

this equilibrium and the one introduced below.

The key assumption sustaining the above equilibrium is that the economy of the society

will recover from the negative economic shock caused by destructive disasters in the next

period (Chassang and Padró i Miquel, 2009; Kikuta, 2019). If post-disaster humanitarian

relief helps the players rebuild their economy and military capabilities, the one who incurred

disproportionately small damage faces a closing window of opportunity: she has the incentive

to attack the temporarily vulnerable rival before parity in players’ military power is restored.9

Figure 3 provides an example. The horizontal axis and vertical axis represent the value

of E [Zt] = µ and the density of Zt, respectively. When c = 0.55, δ = 0.5, π = 0.1, and

Zt ∼ Beta(10, 10) (i.e., µ = 0.5), we have zR(µ = 0.5) ≈ 0.3 and zR(µ = 0.5) ≈ 0.7.

Intuitively, on this equilibrium path, each player attacks the other in period t such that

Dt = 1 if she has at least a seventy percent chance of winning. To compare the results below,

note again that neither has the incentive to fight in a no-disaster period.

3.2 War Caused by Expected Disproportionate Damage

Next, we consider the conditions under which a war occurs due to an inherently vulnerable

player’s fear of future exploitation. To present equilibria that illustrate this case, consider

the following stationary strategies.

9Jun and Sethi (2021); Kikuta (2019) provide empirical support for this logic.
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Figure 3: Thresholds in (R) (c = 0.55, δ = 0.5, π = 0.1, Zt ∼ Beta(10, 10))

(E-I): In a disaster period, i.e., t such that Dt = 1, either one of the players attacks the other

if the realized cost of the disaster is disproportionately incurred.

– When zt is larger than a threshold zE(µ), Player 1 attacks 2.

– When zt is smaller than a threshold zE(µ), Player 2 attacks 1.

(E-II): In a no-disaster period, i.e., t such that Dt = 0, the more vulnerable player attacks the

other.

In the strategies above, notice that war immediately ensues if there is no disaster. The

following proposition provides the conditions under which (E-I) and (E-II) constitute two

equilibria with a different player who attacks at a no-disaster period.

Proposition 2 (Expected asymmetric exposure). Consider the union of two half-open inter-

vals ME ≡
[
0, µE

)
∪ (µE, 1], where the thresholds µE and µE are defined below. When µ ∈ ME,
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the strategies (E-I) and (E-II) constitute an MPE.

• In no-disaster periods, Player 1 attacks Player 2 when µ < µE and Player 2 attacks

Player when µ > µE.

• Given µ ∈ ME, the thresholds zE(µ) and zE(µ) are given as the solution to the following

system of equations.





zE(µ) = δ ·


(1− π)

[
1− δπ/2

1− δ
− c

]
+

π

(
µ+

(∫ zE(µ)

0

zdF (z) +

∫ 1

zE(µ)

zdF (z)

)[
δ
2− π

1− δ
− c

])


(
1− δπ∆F

(
zE(µ), zE(µ)

)) [
δ
2− π

1− δ
− c

]

zE(µ) = 1− δ ·



(1− π)

[
1− δπ/2

1− δ
− c

]
+

π


1− µ+



1−∆F

(
zE(µ), zE(µ)

)

−
(∫ zE(µ)

0

zdF (z) +

∫ 1

zE(µ)

zdF (z)

)



[
δ
2− π

1− δ
− c

]




(
1− δπ∆F

(
zE(µ), zE(µ)

)) [
δ
2− π

1− δ
− c

] .

(2)

• The values of µE and µE are, respectively, given as part of the solution to the system

of three equations composed of each of the following equations and two equations in (2)

with µ = µE or µ = µE.

µE =
1

2
+ δ

2− π

1− δ

(∫ zE(µE)

0

1

2
− zdF (z) +

∫ 1

zE(µE)

1

2
− zdF (z)

)

+c

(∫ zE(µE)

0

zdF (z) +

∫ 1

zE(µE)

zdF (z) +
1− δ

δπ

)

µE =
1

2
+ δ

2− π

1− δ

(∫ zE(µE)

0

1

2
− zdF (z) +

∫ 1

zE(µE)

1

2
− zdF (z)

)

−c

(∫ zE(µE)

0

1− zdF (z) +

∫ 1

zE(µE)
1− zdF (z) +

1− δ

δπ

)
.

Denote these equilibria by (E1) when µ < µE and (E2) when µ > µE, respectively. In
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contrast to the first case (R), these (E1) and (E2) depict how expected (or inherent) asymmetry

in disaster costs leads to war. To see this, suppose µ is geographically vulnerable to disaster

risks, i.e., case (E1), so that Player 1 attacks 2 when Dt = 0 for sure. Her incentive to fight

arises in two steps. First, as in case (R) above, observe that the opportunistic motive for

aggression is also at work here. Because we have assumed that µ is small (by case (E1)), it

is likely that Player 2 becomes temporarily advantaged if there is a disaster.

Second, anticipating this, Player 1 faces a fear of future aggression and exploitation by

the opponent (Bas and McLean, 2021). That is, Player 1 knows that Player 2 will face the

temptation to fight in a disaster period if the realized zt is very small. If Player 1 were to

acquiesce to this possibility, she would not win the war because her probability of victory,

pdi (zt) = zt, is also very small. As a result, the inherent vulnerability of Player 1 generates a

preemptive motive: she has the incentive to attack Player 2 in order to fight under a relatively

favorable balance of power.

Figure 4 shows an example when c = 0.55, δ = 0.5, π = 0.1, and Zt ∼ Beta(10/9, 10) (i.e.,

µ = 0.1). Observe that the values of the parameters are identical to those in Figure 3 except

for the first parameter of the Beta distribution. Compared to the symmetric case (R), the

region of µ under which war occurs in a disaster period is larger, i.e., [0, 0.455) ∪ (0.475, 1].

The strategic logic is as follows. First, the inherently vulnerable Player 1 expects that she

will likely be disadvantaged and that Player 2 will have an opportunistic motive for conflict

once a disaster erupts. Thus, incorporating this risk, Player 1 is willing to fight even when

she does not have a military advantage in a disaster period.10 Second, Player 2 anticipates

Player 1’s preemptive motive. Therefore, although Player 2 should be militarily advantaged

in a disaster period on average (i.e., µ = 0.1), she is also willing to fight even when her actual

advantage is not very large.11

10Notice pd1
(
zE(µ = 0.1)

)
≈ 0.475 < p¬d

1 = 0.5. In other words, Player 1 can launch opportunistic aggres-
sion when she is slightly disadvantaged militarily.

11Compare pd2 (µ = 0.1) = 0.9 and pd2 (z
E(µ = 0.1)) = 0.545.
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Figure 4: Thresholds in (E1) (c = 0.55, δ = 0.5, π = 0.1, Zt ∼ Beta(10/9, 10))

3.3 Summary and Comparison

The result below shows that (R), (E1), and (E2) exhaust all possible equilibria for any value

of µ. Because we consider multiple CDFs of Zt with different means, denote a CDF whose

mean is µ by Fµ.
12

12By Assumption 2, recall that the functional form of each Fµ is still identical.

21



Proposition 3. Fix all parameters other than µ, and suppose µR and µR satisfy

c < min





1

2
− δ

2− π

1− δ

(∫ zR(µR)

0

1

2
− zdFµR(z) +

∫ 1

zR(µR)

1

2
− zdFµR(z)

)

∫ zR(µR)

0

zdFµR(z) +

∫ 1

zR(µR)

zdFµR(z) +
1− δ

δπ

,

1

2
+ δ

2− π

1− δ

(∫ zR(µR)

0

1

2
− zdFµR(z) +

∫ 1

zR(µR)

1

2
− zdFµR(z)

)

∫ zR(µR)

0

zdFµR(z) +

∫ 1

zR(µR)
zdFµR(z) +

1− δ

δπ





.

Then, there exists a unique partition
{
0, µR, µE, µE, µR, 1

}
such that

- when µ < µR, the unique equilibrium is (E1),

- when µ ∈
[
µR, µE

)
, (R) and (E1) constitute equilibria,

- when µ ∈
[
µE, µE

]
, the unique equilibrium is (R),

- when µ ∈ (µE, µR], (R) and (E2) constitute equilibria, and

- when µ > µR, the unique equilibrium is (E2),

Figure 5 illustrates the result. Parameters are fixed as c = 0.08, δ = 0.5, and π = 0.1.

Zt follows Beta(α, 10), and µ takes different values as α varies. In this example, a unique

equilibrium exists when µ has a middling value (case (R)) and small or large (cases (E1)

and (E2)). There are also small regions of equilibrium multiplicity. Approximately speaking,

when µ ∈ [0.20192, 0.20213), both cases (R) and (E1) constitute equilibria. Similarly, when

µ ∈ (0.79786, 0.79788], cases (R) and (E2) are supported as MPE.

We now compare the equilibrium outcomes of the two types of equilibria: (R) on the one

hand and (E1) and (E2) on the other. First, observe that conflict occurs in both disaster

and no-disaster periods in cases (E1) and (E2). In a disaster period, because a mechanism
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Figure 5: Intervals of µ and equilibrium (c = 0.08, δ = 0.5, π = 0.1, Zt ∼ Beta(α, 10))

similar to one in case (R) (i.e., opportunistic motive) is at work, conflict erupts with a positive

probability. In a no-disaster period, recall that war never occurs in case (R). On the other

hand, however, because the vulnerable player expects to be disadvantaged in the future in

cases (E1) and (E2), she preemptively attacks the other with probability one in a no-disaster

period. Thus, in the cases of asymmetric inherent disaster risks, i.e., (E1) and (E2), war is

strictly more likely in the absence of a disaster, whereas it can erupt in both types of periods.

For later use in the following sections, I formally summarize this comparison. Define

Y game
t = 1{Conflict occurs at time t on the equilibrium path} and interpret it as a random

variable generated by an equilibrium of the model. Further, denote µ = µR when µ ∈ MR

and µ = µE when µ ∈ ME.13 Then, we obtain the straightforward result below.

Corollary 1. For any t in each equilibrium, we have

(i) Pr (Y game
t = 1|Dt = 1, µR) > Pr (Y game

t = 1|Dt = 0, µR) = 0, and

(ii) Pr (Y game
t = 1|Dt = 1, µE) < Pr (Y game

t = 1|Dt = 0, µE) = 1.

We shall discuss the implications of this theoretical result in the following sections. Specif-

ically, in the next section, I derive a novel prediction from it and present suggestive evidence

to connect data and the theory. Then, given the corollary, I propose theoretical implications

for empirical research to make sense of the seemingly mixed results in the literature.

13For simplicity, assume equilibrium (E1) or (E2) will be played when µ ∈ MR ∩ME.
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4 Empirical Implications of the Theoretical Model: The

Case of Droughts

Here, I present an empirical exercise to draw empirical implications from the asymmetric-

exposure model. We focus on a specific type of climate anomaly: drought. We focus on

droughts because (i) social scientists have yet to reach a consensus on their effects on conflict

and (ii) we will also examine the case of drought (from a different perspective) in the next

section.. To begin with, I briefly discuss the datasets and connect them to the model. Next,

I draw an empirical implication from Corollary 1 and offer suggestive evidence based on the

data.

4.1 Data and Empirical Analogues to the Model Features

Before introducing data, observe that the key parameter in the model µ is a dyadic feature.

To see this, recall the hypothetical examples in the introduction. Let Group 1 be the same

in Cases 1 and 2. Although Groups 1, 2, and 2’ are in the same region (the same country in

the context of intrastate conflict), the level of asymmetry in disaster risks between Groups

1 and 2 is different from that between Groups 1 and 2’. This implies that highly aggregated

data may not be able to capture the dyadic characteristics of the model.

To incorporate the dyadic nature, we use two sources of geo-referenced data: Armed

Conflict Location and Event Data (ACLED, Raleigh et al., 2023) and the Palmer Drought

Severity Index (PDSI, Dai et al., 2004). The ACLED provides event-level data on political

unrest that occurred in or after 1997. Because we are interested in armed conflict (as opposed

to, say, nonviolent demonstrations), we also restrict our attention to observations in the

ACLED whose event type variable is coded as “Battles”. It also specifies the identity of

the involved parties in a given conflict event and classifies the type of the group (e.g., state

forces; a rebel group). The PDSI dataset assigns the level of water scarcity/abundance to
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each 2.5◦ × 2.5◦ grid cell. A PDSI score takes a value in [−10, 10], where a higher (lower)

value indicates water abundance (scarcity). The monthly dataset covers from 1850 to 2018.

I attach the corresponding PDSI score to each ACLED event.

We focus on conflict events in African countries for two reasons. First, Africa is a fa-

vorable case in Salehyan and Hendrix (2014) (in the sense that their subsample of African

countries supports their argument strongly) that we critically discuss in the next section.

Thus, although the goal of the empirical exercise below is not to falsify their findings, if it

still supports the asymmetric-exposure theory in their “favorite” case, then it would suggest

that the findings of Salehyan and Hendrix (2014) are a special case of the theory. Second,

focusing on Africa mitigates the risk of biased inferences. Rosvold and Buhaug (2021) point

out the possibility that cross-continent comparisons of geo-coded data might lead to biases

because of different qualities in reporting by region. Because richer regions tend to have

greater capabilities of reporting disaster and conflict events, focusing on a specific (though

still diverse) region mitigates the risk of bias. Consequently, our empirical exercise covers

conflict events and the levels of water abundance in Africa from 1997 to 2018.

Using the above data, we now define empirical analogues to variables/parameters in the

game-theoretic model. Because we are interested in the implications of Corollary 1, we want

to relate Y game
t , Dt, and µ to data. First, define Y data

dt ∈ {0, 1} as a variable that takes

the value of one when dyad d of two belligerent groups had a conflict event at time t and

zero otherwise. It is important to note that, whereas the ACLED dataset provides geo-

referenced and detailed information about political violence and the parties involved, the

unit of observation in the dataset is a conflict event rather than, say, country-year. This

implies that the ACLED data essentially presents the cases of Y data
dt = 1. In other words, we

are unable to directly compare the observations that take Y data
dt = 1 and those with Y data

dt = 0.

Although this nature might lead to an issue of selection when we analyze the dataset, I draw

a theoretical prediction to avoid this issue below.
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Second, we interpret a smaller value of PDSI as the presence of drought. Specifically, we

define the PDSI score in the previous month as the severity of drought at the time of conflict

in dyad d at time t.14 Denote it by PDSId,t−1. Note that this is a continuous variable, unlike

Dt which represents the presence/absence of a disaster in the model. Namely, a higher value

of PDSId,t−1 is an empirical analogue to Dt = 0 because it implies water abundance, whereas

a smaller PDSId,t−1 is analogous to Dt = 1 (i.e., presence of drought) because it stands for

water scarcity.

Third, we are interested in the level of asymmetry in disaster risks of dyad d. Although

this is the key parameter in the theory (µ in the model), it is at least challenging to measure

the relative risks of disaster exposure for every dyad of all politically relevant groups in

African countries and assign it to each dyad. I assume the following statement to derive an

informative analogue to µ from the ACLED dataset.

Assumption 3. An intrastate conflict involving the government as one of the belligerents

tends to be between groups with asymmetric disaster risks than a conflict involving only

non-state actors.

In other words, given that two groups are engaged in a conflict, we interpret that they

face a symmetric risk of exposure to disasters if the types of the involved parties are similar.

Conversely, they tend to have asymmetric disaster risks when one side of the parties is part

of the government forces and the other is not. Though an imperfect measure, it is natural to

assume that, on average, government forces tend to be more resilient to disasters than rebel

groups are.15

14The one-month lag guarantees that the climate condition in a certain region proceeds the occurrence of
conflict in the location.

15One possible problem is selection effect: rebel groups that have enough material capabilities to fight
government forces may also be resilient. However, relatively weak rebel groups can still continue armed
struggles with the (more powerful) government in some environments. For example, conflicts in locations
distant from the capital tend to last longer because government control in those regions tends to be weaker
(Buhaug et al., 2009). Moreover, even weaker groups may be able to endogenously render their armed struggle
last longer by adopting guerrilla tactics (Qiu, 2022).
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Model Empirical analogue Note

Conflict Y game
t Y data

dt ∈ {0, 1} Y data
dt = 1 for all dt in ACLED

Disaster Dt PDSId,t−1 ∈ [−10, 10] Smaller PDSId,t−1 stands for Dt = 1 (drought)
Asymmetry µ govdt ∈ {0, 1} µ reinterpreted as a random variable, µRV

Table 1: Empirical analogues to the model features

Under this assumption, we reinterpret µ (given parameter in the model) as a random vari-

able. For later use, let µRV ∈ [0, 1] a random variable that represents the level of asymmetry

in disaster risks for two relevant groups.16 As an empirical analogue of µRV in the ACLED

dataset, define a binary variable govdt ∈ {0, 1} that indicates if (i) an incident involved the

government forces or (ii) both sides were non-state actors:

govdt ≡ 1




One of the belligerents in an incident

in dyad d at time t is state forces





.

Given the definition of govdt and Assumption 3, we say dyad d that had a conflict event at

time t faces asymmetric disaster risks when govdt = 1 and symmetric risks when govdt = 0.17

Table 1 summarizes the empirical analogues to the model features.

4.2 Prediction and Results

Given the empirical analogues defined above, we now connect the theory and data. Despite

some limitations, such as Y data
dt being one for all dt and govdt being a coarse measure of µ,

we are still able to draw an empirical implication from the model and assess it with the data.

To this end, recall that we have reinterpreted µ (which was an exogenously given parameter

in the game-theoretic model) as a random variable. Let Pr (µRV ∈ ME) ∈ (0, 1), and suppose

16Recall that µ is an exogenous parameter in the game. However, it is also natural to think of the asymmetry
in inherent disaster risks between two rival political groups as randomly distributed among dyads. Here, we
take this interpretation to show the connection between the theory and data.

17To distinguish conflicts in symmetric and asymmetric dyads as clearly as possible, I exclude events
between (i) two state forces (e.g., different fractions in military forces in the same country) and (ii) state
forces and an external group (e.g., international conflict).
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that µRV and Dt are independent. Then, a direct application of Bayes’ rule to Corollary 1-(ii)

yields the following result.

Corollary 2. Pr (µRV ∈ ME|Y game
t = 1, Dt = 0) > Pr (µRV ∈ ME|Y game

t = 1, Dt = 1) .

This result is intuitively straightforward. In the game, recall that conflict erupts on the

equilibrium path when Dt = 0 only in the asymmetric cases. Thus, given that a conflict

took place at t such that Dt = 0 in the model, it must be that the players are playing an

asymmetric equilibrium. As a result, the left-hand side of the above inequality is one. One

can see that the inequality holds because the right-hand side is strictly smaller than one:

conflict can ensue in both symmetric and asymmetric equilibria, thus µRV may or may not be

in ME in this case.

We now translate this theoretical implication into empirical terms. That is, replacing

Y game
t , Dt, and µRV with Y data

dt , PDSId,t−1, and govdt, respectively, yields a novel prediction

below:

Implication 1. Corollary 2 implies

Pr


 govdt = 1︸ ︷︷ ︸

Stands for µRV ∈ ME

∣∣∣∣∣∣∣

Fixed = 1 in data︷ ︸︸ ︷
Y data
dt = 1, High PDSId,t−1︸ ︷︷ ︸

Stands for Dt = 0


 > Pr


govdt = 1

∣∣∣∣∣∣∣
Y data
dt = 1,Low PDSId,t−1︸ ︷︷ ︸

Stands for Dt = 1


 .

Note that this empirical analogue to the theoretical prediction (Corollary 2) is not a

causal statement. Rather, by reinterpreting µ in the model as a random variable, it speaks

to the probability distribution of the level of asymmetry in disaster risks between belligerent

groups (govdt) given that they are engaged in political violence.

Given Implication 1, we are interested in Pr (govdt = 1|Y data
dt = 1, PDSId,t−1) for each
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PDSId,t−1 ∈ [−10, 10]. To assess it, consider the simple logistic regression below:

Pr
(
govdt = 1

∣∣Y data
dt = 1, PDSId,t−1

)
=

1

1 + e−(β̃0+β1PDSId,t−1+β2Y data
dt )

=
1

1 + e−(β0+β1PDSId,t−1)
. (3)

Because we always have Y data
dt = 1 in the data, we interpret that the effect of Y data

dt is captured

in the constant β0 (i.e., β0 ≡ β̃0 + β2). Recall that (i) govdt = 1 is assumed to imply that

the belligerents face asymmetric disaster risks (i.e., µ ∈ ME in the model) and (ii) a higher

value represents water abundance (i.e., Dt = 0 in the model). Thus, by Implication 1, the

(estimated) probability should be an increasing function of the PDSI score (PDSId,t−1) if the

above theory is consistent with the data. In sum, our estimand is the pair of the constant

and coefficient (β0, β1) in expression (3).

Figure 6 illustrates the result. The horizontal and vertical axes represent PDSId,t−1 and

govdt, respectively. Thus, it suggests that Pr (govdt = 1|Y data
dt = 1, PDSId,t−1) is increasing in

PDSId,t−1. Table 4.2 presents a few additional results. First, the distance between the location

of a given conflict event and the capital city might be driving the result. A possible logic is

that (i) a capital city might tend to be located in geographically resilient regions historically

(possible correlation with PDSId,t−1) and (ii) government control tends to be weaker in regions

distant from the capital, leading to more conflicts between rebel groups and government forces

(possible correlation with govdt). Second, the PDSI score of the month in which the conflict

event took place (PDSIdt) is also added to see if the score for the previous month seems an

appropriate measure. The results remain similar.

While the above result is first-cut evidence, the prediction in Implication 1 drawn from

the model is, to the best of my knowledge, novel. This empirical exercise attempts to connect

the theory and data as directly as possible and suggests that the model is consistent with

real-world data. Now we shall discuss what we can learn from it about empirical research on
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Figure 6: Asymmetry in a belligerent dyad as an increasing function of water abundance

the climate-conflict nexus based on the theory.

5 Theoretical Implications for Empirical Research: The

Case of the Potential Outcome Framework

The theoretical discussion leads to important implications for the empirical literature on

climate shocks and armed conflict. The model (Corollary 1) implies that disasters have

heterogeneous treatment effects on the risk of armed conflict. That is, in the asymmetric

case, conflict events should be positively associated with disaster risks, rather than actual

disaster events. In addition to the suggestive evidence presented above, a recent paper by

Bas and McLean (2021) also supports this implication empirically. To take their findings

one step further, this section provides a possible explanation for why the empirical results of

climate conflict research are mixed. First, I show that overlooking the asymmetric case of the

model (cases (E1) and (E2)) can lead to an underestimation of the effect of natural disasters
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Dependent variable: govdt

(1) (2) (3) (4)

PDSId,t−1 0.034∗∗∗ 0.033∗∗∗ 0.029∗∗∗

(0.004) (0.004) (0.005)

Distance to capital 0.053∗∗∗ 0.053∗∗∗

(standardized) (0.010) (0.010)

PDSIdt 0.025∗∗∗ 0.008
(0.004) (0.005)

Constant 0.758∗∗∗ 0.759∗∗∗ 0.754∗∗∗ 0.760∗∗∗

(0.011) (0.011) (0.010) (0.011)

Observations 43,194 43,194 43,194 43,194

Note: †p < 0.1; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001

Table 2: Drought and government involvement in conflict events

on conflict risks in the potential outcome framework. Second, based on this discussion, I

revisit the case of drought to make sense of the ostensibly mixed empirical results.

5.1 Heterogeneous Effects of Disaster Events

Suppose that we want to employ the potential outcomes framework to study the causal effects

of natural disasters and climate anomalies on armed conflict. Let the (binary) potential

outcome Y PO
dt (Ddt) ∈ {0, 1} represent the presence (Y PO

dt (Ddt) = 1) and absence (Y PO
dt (Ddt) =

0) of armed conflict at time t in dyad of groups d given treatment Ddt.
18 We define the

observable treatment Ddt in a similar way as in the game-theoretic model. That is, Ddt ∈

{0, 1} denotes the presence (Ddt = 1) and absence (Ddt = 0) of a natural disaster in dyad d

in period t, which is independently and identically drawn.

Next, recall that µ is also a dyadic concept because it stands for the (a)symmetry in

18One can think of d as a pair of rival political groups or sovereign states.
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inherent disaster risks between two players. Thus, suppose that we have data on the level

of such asymmetry for dyad d, denoted by µd ∈ [0, 1].19 Further, as in the game-theoretic

model, suppose that we have two sets MR,ME ⊂ [0, 1] such that (i) rival political groups in

dyad d face a symmetric risk of exposure to natural disasters when µd ∈ MR and (ii) they face

an asymmetric risk of exposure when µd ∈ ME.20 In the potential outcomes framework, this

formulation implies that (Y PO
dt (Ddt)|µ′) ̸= (Y PO

dt (Ddt)|µ′′), where µ′ ∈ MR, µ′′ ∈ ME, which

leads to a simple implication below.

Implication 2. Suppose we want to examine the causal effect of a disaster on armed conflict

onset using the potential outcome framework. Then, a desirable estimand may be the condi-

tional average treatment effect (CATE), τ (µ) ≡ E [Y PO
dt (1)− Y PO

dt (0)|µd = µ], rather than the

average treatment effect (ATE), τ ≡ E [Y PO
dt (1)− Y PO

dt (0)].

To derive more specific implications, suppose that we have country-year data of conflict

events in dyad d at time t. Denote the presence and absence of conflict by Y data
dt = 1 and

Y data
dt = 0, respectively. Further, let us tentatively assume that the game-theoretic model

captures the true data-generating process.

Assumption 4. We can interpret Y data
dt︸ ︷︷ ︸
Data

= Y game
t︸ ︷︷ ︸

Model

and Ddt︸︷︷︸
Data

= Dt︸︷︷︸
Model

.

In other words, we interpret real-world conflict data as products of equilibrium outcomes in

the game of asymmetric exposure to extreme weather events. Then, given that (Y data
dt |Ddt = 1) =

Y PO
dt (1), we obtain the following.

Corollary 3. Assumption 4 and Corollary 1 yield:

(i) Pr (Y PO
dt (1) = 1|µd = µR) > Pr (Y PO

dt (0) = 1|µd = µR) and

19In the discussion below, µd does not have to be considered as a random variable, unlike the previous
section.

20For simplicity, assume that MR and ME are mutually disjoint. The simplest example is the case where
µd is binary. For instance, in the previous section, I define MR = {0} and ME = {1}, and the measure that
represents µd (i.e., govdt) only takes zero or one.
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(ii) Pr (Y PO
dt (1) = 1|µd = µE) < Pr (Y PO

dt (0) = 1|µd = µE) .

In words, the result represents the two types of equilibrium outcomes: (i) when two rival

political groups face a symmetric risk of exposure to disasters, war is more likely to erupt in

a given period t when a disaster has occurred in the same period (i.e., Ddt = 1); (ii) when

they face an asymmetric risk of exposure, conflict is more likely when there is no disaster in

period t (i.e., Ddt = 0).

This result drawn from the game-theoretic model leads to another, more specific impli-

cation. Suppose µd = µR. Rearranging Part (i) of Corollary 3 immediately yields

Pr
(
Y PO
dt (1) = 1

∣∣µR
)
− Pr

(
Y PO
dt (0) = 1

∣∣µR
)

= 1 · Pr
(
Y PO
dt (1) = 1

∣∣µR
)
+ 0 · Pr

(
Y PO
dt (1) = 0

∣∣µR
)

−1 · Pr
(
Y PO
dt (0) = 1

∣∣µR
)
+ 0 · Pr

(
Y PO
dt (0) = 0

∣∣µR
)

= E
[
Y PO
dt (1)

∣∣µR
]
− E

[
Y PO
dt (0)

∣∣µR
]

= τ
(
µR
)
> 0.

Similarly, from Part (ii) of Corollary 3, we obtain Pr (Y PO
dt (1) = 1|µE)− Pr (Y PO

dt (0) = 1|µE) =

τ (µE) < 0. Implication 3 below summarizes the results.

Implication 3. Corollary 3 implies τ (µR) > 0 > τ (µE).

It is important to note that, even if researchers rely on CATE rather than ATE, the

potential outcome approach itself could be problematic in this case. To see this, suppose

that belligerent groups in dyad d face an asymmetric risk of exposure to disasters (i.e.,

µd = µE). Then, Implication 3 states that the effect of a disaster on conflict onset in the

sense of CATE is negative, τ (µE) < 0, under Corollary 3.

However, although the CATE is negative, asymmetric exposure to disaster risks causes

a war in the game-theoretic model: Remarks 1 and 2 show that the possibility of disasters

and variation in Zt are necessary conditions for a conflict to erupt on the equilibrium path.
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Therefore, if asymmetric exposure to disasters and climate anomalies generates an antici-

pation of temporary military power shifts in the real world (as empirically tested by Bas

and McLean, 2021), overlooking the strategic dynamic of the second equilibrium leads to

underestimation of their true causal effect on the propensity of war.

Put differently, Implication 3 suggests that some frameworks for causal inference may

sometimes not be suitable for particular phenomena. Suppose that researchers have fine

data on conflicts that erupted right after a natural disaster. Despite abundant data, the

model and Implication 3 show that there can exist conflict episodes that are classified as

ones that erupted because of factors other than disasters but were actually triggered by

asymmetric exposure to disaster risks. If such a case exists, the causal effect of disasters on

conflicts in terms of CATE should not be appropriate.

5.2 Making Sense of Seemingly Mixed Evidence

To reinterpret existing empirical results theoretically, let us revisit the case of drought. In

particular, I discuss the results presented by Salehyan and Hendrix (2014), who find a pacify-

ing effect of droughts, and point out that their findings could be due to the ostensible negative

effect of droughts. To be clear, the discussion below is not aimed at falsifying Salehyan and

Hendrix (2014). Rather, it attempts to demonstrate the possibility that some empirical

findings on the negative causal effects of climate disasters on conflict might be driven by a

particular form of their positive effect, namely, the preemptive mechanism in the asymmetric

cases (E1) and (E2) of the model.

Salehyan and Hendrix (2014) argue that water scarcity can decrease armed conflict.

Droughts harm agricultural production in affected areas and reduce economic resources.

As a result, water scarcity impairs the mobilization capabilities of rival political groups, and

thus organized armed conflict should decline under such conditions. Utilizing data on water

scarcity (including the PDSI data) and armed conflict, Salehyan and Hendrix (2014) find
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that water abundance positively correlates with conflict.

Their interpretation of the correlation might be problematic. To see this, observe the

implicit assumption in the logic of Salehyan and Hendrix (2014) that water scarcity affects

groups’ mobilization capabilities symmetrically. Namely, conflict becomes a less attractive

option under water scarcity because, in their theory, both sides of a given dispute face a

lower mobilization capability. However, if one drought happens to cause water scarcity in

a particular region, such an (implicit) assumption does not necessarily remain plausible.

Rather, if water scarcity is more severe in one region than others, then only one side of a

political dispute can lose its power to mobilize. In this case, the rival group that has incurred

less severe water scarcity remains its mobilization capability. As the formal model suggests,

such asymmetry in power can generate an incentive for rival political groups to fight, rather

than deescalate.

Given the demanding implicit assumption on the symmetry in disaster damages, the

findings of Salehyan and Hendrix (2014) may be a product of preemptive motives arising

from the asymmetric equilibrium (E1) or (E2). Whereas Salehyan and Hendrix (2014) argue

that droughts and water scarcity decrease conflict, the equilibrium suggests that conflict

is strictly more likely in periods without water scarcity due to preemptive motives. The

empirical results should look similar: the former logic predicts that “more droughts in the

present period make conflict less likely due to the mobilization-capability logic,” whereas

the latter states that “fewer droughts in the present period make conflict more likely due

to the preemptive motive.” However, recall that what triggers conflict in the latter logic is

the asymmetric exposure to disaster risks. Hence, opposing two reasonings, i.e., pacifying

effects of extreme weather events on the one hand and destabilizing effects of their risks on

the other, lead to the same empirical pattern.

Implication 4. Despite their opposing (destabilizing versus pacifying) conclusions, the

preemptive-attack logic and the mobilization-capability logic generate an observationally
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equivalent prediction.

Figure 7 illustrates the intuition. Consider the horizontal and vertical axes as time and

the risk of conflict, respectively. The green line represents the risk of conflict as a function of

time and other variables than water scarcity. Then, let the shaded areas on the horizontal axis

denote the periods during which the region experienced droughts. In this simplified setting,

the mobilization-capability logic by Salehyan and Hendrix (2014) predicts that the value of

the function should be smaller under water scarcity (blue line in Figure 7). On the other

hand, the preemptive-war logic in the second equilibrium of the above model suggests that

the value should be greater under relative water abundance (red line). Based on the former

logic, the graph of the function consists of the blue segments (in the shaded periods) and

green lines (periods without water scarcity), whereas the latter logic draws a graph composed

of the red segments (periods without water scarcity) and green lines (in the shaded periods).

Observe that the shapes of the two graphs should look similar, although the latter one is

strictly greater than the former.

The data in Salehyan and Hendrix (2014) suggest that their findings might be driven

by the logic of asymmetric exposure to disaster risks. Recall that, in the game-theoretic

model, the equilibrium outcomes vary across the value of µ, which represents the level of

(a)symmetric exposure to disaster risks. The second, preemptive-war equilibrium (E1) or E2

emerges when µ is close to zero or one, where one group is inherently more vulnerable to future

extreme weather events. Moreover, for the second equilibrium to arise, natural disasters in

question and their expected damage should be, at least to some extent, foreseeable: as

Remarks 1 and 2 suggest, the preemptive war in the second equilibrium never erupts if the

risk and asymmetric costs are not perceptible in the first place.

These conditions seem to be satisfied in Salehyan and Hendrix (2014). First, their unit of

observation is country-year. Thus, it is more likely that relevant rival groups are geograph-

ically distant. Consequently, the level of asymmetry in disaster risks should be greater (µ
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Figure 7: Opposing theories leading to similar empirical patterns

close to zero or one) in country-year data than in more geographically disaggregated ones,

where relevant groups are inevitably more proximate in the geographical unit and should be

facing similar disaster risks. Second, droughts are seasonal disasters. Thus, at least, they

are relatively more foreseeable than other natural disasters such as earthquakes. The rel-

ative predictability of droughts renders the preemptive motive in the second equilibrium a

plausible strategic logic connecting future disaster risks to conflict in the present period.

One can also situate other studies that seem to contradict Salehyan and Hendrix (2014) in

the context of the asymmetric-exposure theory. For example, Fjelde and von Uexkull (2012)

find that negative rainfall anomalies are associated with more communal conflicts between

non-state actors in sub-Saharan Africa. Recall the variable govdt defined in the previous

section: based on the measure, the conflict data in Fjelde and von Uexkull (2012) should

have govdt = 0 (symmetric dyads) because they focus on non-state conflicts. If we assume

govdt = 0 captures µ ∈ MR, the theory also predicts that droughts and communal conflicts

are positively correlated.
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Moreover, Bell and Keys (2018) argue that the effect of drought on conflict in sub-Saharan

Africa is conditional on other factors related to conflict risks, such as social vulnerability (e.g.,

inadequate food supply), equal distribution of or access to emergency resources (e.g., ethnic

exclusion), and state capacity (e.g., low urbanization). For instance, they find a significant

positive association between drought and conflict contingent on low ethnic exclusion. If

inclusive distribution of resources among different ethnic groups implies that those groups

have relatively symmetric resilience/vulnerability to extreme weather events (µ ∈ MR in the

model), this finding exemplifies Corollary 1. Hence, it is also consistent with the asymmetric-

exposure theory.

In sum, some of the seemingly contradictory empirical results can be driven by one of

the two heterogeneous effects of disasters conditional on the level of (a)symmetry in disaster

risks. We may be able to make sense of them by taking theory and the data-generating

process behind them more seriously.

5.3 Policy Implication

The theory also has a policy implication that decision-making on which regions to prioritize

for policy intervention to improve resilience is not straightforward. To see this, recall that the

two strategy profiles that can constitute an asymmetric equilibrium, (E1) and (E2), state that

the inherently vulnerable player fights for sure in any no-disaster period. Hence, denoting

the ex ante probability of war on the equilibrium path under strategy profile s at any period

t as P(s), where s ∈ {R, E1, E2}, we have the simple result below.

Corollary 4. Suppose that, depending on the shape of F , strategy profiles (R), (E1), and (E2)

constitute an equilibrium. Then, whenever π < 1/2, we have P(R) < min {P(E1),P(E2)}.

Namely, if disasters are not too likely, then the asymmetric case is strictly more conflict-

prone. This result is straightforward. Because the conditional probability of conflict given

Dt = 0 (which occurs with probability 1−π) is one in cases (E1) and (E2) and zero in case (R),
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the ex ante probabilities of conflict in the former two cases become strictly greater whenever

“no disaster” is likely enough, irrespective of the conditional probability of conflict in disaster

periods. Note that this result does not depend on the shape of F and that it solely arises

from the existence of the preemptive motive for conflict.

To see that the result leads to an interesting policy implication, recall Implication 3: the

CATE of a disaster event on conflict for dyads of rival political groups with asymmetric

vulnerabilities is negative. Now suppose that, given limited resources, policy-makers are

considering which regions to focus on when they allocate budgets for improving the society’s

robustness to disaster risks and the subsequent conflict risks. In empirical data, regions

where those asymmetric dyads are located may not seem susceptible to conflict arising from

climate shocks because disaster and conflict events are negatively correlated. However, it is

such regions that display a higher risk of conflict due to the preemptive motive. Therefore,

regions that appear to be experiencing climate-event-induced conflicts (case (R) in the theory)

may not always be the most fragile targets in need of policy interventions such as climate

adaptation efforts.

6 Conclusion

This paper has shown that a single process of asymmetric exposure to climate anomalies and

other natural disasters generates two qualitatively distinct equilibrium strategies. The key

parameter is the asymmetry in the inherent risk of exposure to extreme weather events and

other natural disasters. It determines the source of conflict in the equilibrium path. In the

first case, conflict erupts as a consequence of an actual disaster that causes a temporary shock

to the balance of power. In the second, war is more likely before a disaster occurs because

of the anticipated asymmetry of its costs. Put differently, although disasters trigger conflict

in both cases either through their actual occurrence or their future risks, in the asymmetric

case, the probability of conflict onset is strictly larger in the absence of a disaster than right
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after it.

This theoretical result yields a novel (i) empirical prediction and (ii) theoretical interpre-

tation of why the results of empirical research on climate conflict are inconclusive. Although

it does not directly dispute specific empirical results, the game-theoretic model implies that

we might be underestimating the causal effect of disasters and extreme weather events on

armed conflict. Specifically, in the second (asymmetric) case, the actual occurrence of a nat-

ural disaster and conflict onset should be negatively correlated, but those conflicts are also

caused by disaster risks. Therefore, if extreme weather events have multiple effects, includ-

ing the one studied in this paper (randomness and asymmetry in exposure), the seemingly

mixed results may be mixed only ostensibly. Namely, it is possible that the conflict-inducing

effects of natural disasters are larger than shown in empirical studies if they overlook the

heterogeneous impacts.
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A Proofs of the Statements in the Main Text

A.1 Proof of Remark 1

Proof. We want to show that (i) a strategy profile in which both players never fight constitutes

an SPE and (ii) it is the unique equilibrium. First, consider an arbitrary subgame, and

suppose that one player is following a strategy in which she never attacks the opponent at

any decision node. Let V0 and W0 denote the other player’s continuation payoff and expected

war payoff, respectively. Then, we have

V0 = θ + δV0

W0 =
1

2

[
2θ(1− c) + δ

∞∑

t=1

δt−1 · 2θ
]
+

1

2
· 0

= θ

[
1

1− δ
− c

]
.

Since solving the first equation for V0 yields V0 = θ/(1 − δ), we obtain V0 > W0 for any

c ∈ (0, 1). Because any deviation (attacking the opponent) ends the game, we do not need

to check off-path strategies. Hence, the strategy profile in which neither player ever fights

constitutes an SPE.

The above equilibrium is unique under Assumption 1. To see this, suppose to the contrary

that there exists another SPE. If so, because such an equilibrium is different from the one

shown above in which neither attacks the other at any history, it implies that war must occur

in some history. Assumption 1 rules out strategy profiles in which both players attack in

the same period. Thus, it leaves a strategy profile where one player unilaterally attacks the

other at some history t′. Consider the attacker’s incentive at such period t′. For an arbitrary

continuation game, a one-step deviation of not attacking at period t′ would yield a path of

play on which peace is maintained for τ ≥ 1 periods and war erupts in the (τ + 1)th period

(unless τ = ∞). Such deviation would generate a continuation payoff
∑τ

t=1 δ
t−1θ+ δτW0. In
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sum, the incentive of the attacker at period t′ has to satisfy

W0

︸︷︷︸
Attack at t′

≥ 1− δτ

1− δ
θ + δτW0

︸ ︷︷ ︸
Deviation

−c ≥ 0,

which never holds by c ∈ (0, 1). Therefore, any potential attacker has the incentive to

deviate to sustain peace in any strategy profile where war occurs at some history t′. This

result contradicts the assumption that there is another SPE, which proves that no other

equilibrium is possible under Assumption 1.

A.2 Proof of Remark 2

Proof. As in Remark 1, we want to show that the completely peaceful strategy profile is the

only SPE. To show this, first define players’ continuation payoff from the strategy profile:

Vsym ≡ (1− π) (θ + δVsym) + π

(
1

2
θ + δVsym

)

Vsym = θ · 1− π/2

1− δ
.

Next, let Wd,sym and W¬d,sym be the expected war payoff when a war occurs in a disaster

and no-disaster periods, respectively.

Wd,sym =
1

2

(
θ(1− c) + δV

)

W¬d,sym =
1

2

(
2θ(1− c) + δV

)
.

Not attacking is the best response in disaster and no-disaster periods if 1
2
θ+ δVsym > Wd,sym

and θ + δVsym > W¬d,sym, respectively. Simple computation reduces both inequalities to

c > 0, which always holds. Because not attacking is the best response to the other player not
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attacking in any subgame, the strategy profile in which both players never fight is an SPE.

The same logic as Remark 1 proves the equilibrium uniqueness: no other equilibrium

is possible given that (i) not attacking is strictly more beneficial when the other player is

following the peaceful strategy (in which she never attacks the opponent) and (ii) mutual

attacks do not occur under Assumption 1.

A.3 Proof of Proposition 1

Proof. I prove the proposition in three simple steps. Before doing so, for simplicity, let us

introduce the following notation. Notice that the game is symmetric except for variables

related to Z. Then, for a variable/parameter x ∈ {Z, zt, µ}, denote its relevant value to each

player by x̃ ≡ 1 {i = 1} · x + 1 {i = 2} (1− x). For example, z̃tθ represents the remaining

amount of resources for Player 1 (i.e., ztθ) and Player 2 (i.e., (1− zt)θ) in a disaster period.

Step 1 (Preliminaries). First, we identify the players’ expected payoffs when they follow

strategies (R-I) and (R-II). First, consider war payoffs. Suppose that Nature has determined

the presence/absence of a disaster and its asymmetric exposure zt if one occurred. LetWd
i and

W¬d
i denote player i’s expected war payoff in a disaster and no-disaster periods, respectively.

Then, we have

Wd
i = pdi (zt)

(
θ(1− c) + δV

)

= z̃tθ

[
1 + δ(1− π)

1− δ
− c

]

W¬d
i = p¬di

(
2θ(1− c) + δV

)

= θ

[
1− δπ/2

1− δ
− c

]
.

Next, consider the expected peace payoffs. Let VR
i denote player i’s continuation payoff

when both players follow strategies (R-I) and (R-II). We can see that VR
i consists of four

components: cases where (i) a disaster does not take place; (ii) a disaster erupts and neither
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player fights; (iii) a disaster takes place and zt is small so that Player 2 attacks 1; and (iv) a

disaster occurs and zt is large so that Player 1 attacks 2. Thus, we have

VR
i =

(i) No-disaster period︷ ︸︸ ︷
(1− π)

(
θ + δVR

i

)

+π




(ii) Pr(Peace)︷ ︸︸ ︷
∆F

(
zR, zR

) (
E
[
Z̃
∣∣∣Z ∈

[
zR, zR

]]
θ + δVR

i

)

+ F
(
zR
)

︸ ︷︷ ︸
(iii) Pr(P2 attacks)

E
[
Z̃
∣∣∣Z < zR

]
θ

[
(1− c) + δ

2− π

1− δ

]

︸ ︷︷ ︸
E[Wd

i |Z<zR]

+
(
1− F

(
zR
))

︸ ︷︷ ︸
(iv) Pr(P1 attacks)

E
[
Z̃
∣∣∣Z > zR

]
θ

[
(1− c) + δ

2− π

1− δ

]

︸ ︷︷ ︸
E[Wd

i |Z>zR]




︸ ︷︷ ︸
Disaster period

,

where ∆F (b, a) = F (b)− F (a) with a ≤ b. Solving this for VR
i yields

VR
i = θ ·

(1− π) + π




∆F

(
zR, zR

)
E
[
Z̃
∣∣∣Z ∈

[
zR, zR

]]

+
(
F
(
zR
)
E
[
Z̃
∣∣∣Z < zR

]
+
(
1− F

(
zR
))

E
[
Z̃
∣∣∣Z > zR

]) [
(1− c) + δ

2− π

1− δ

]



1− δ (1− π (1−∆F (zR, zR)))

= θ ·

(1− π) + π




∆F

(
zR, zR

)
E
[
Z̃
∣∣∣Z ∈

[
zR, zR

]]

+F
(
zR
)
E
[
Z̃
∣∣∣Z < zR

]
+
(
1− F

(
zR
))

E
[
Z̃
∣∣∣Z > zR

]

+
(
F
(
zR
)
E
[
Z̃
∣∣∣Z < zR

]
+
(
1− F

(
zR
))

E
[
Z̃
∣∣∣Z > zR

]) [
δ
2− π

1− δ
− c

]




1− δ (1− π (1−∆F (zR, zR)))

= θ ·
(1− π) + π

[
µ̃+

(
F
(
zR
)
E
[
Z̃
∣∣∣Z < zR

]
+
(
1− F

(
zR
))

E
[
Z̃
∣∣∣Z > zR

]) [
δ
2− π

1− δ
− c

]]

1− δ (1− π (1−∆F (zR, zR)))
,

where the last equation holds by the law of iterated expectations. By E [Z|Z ∈ [z, z]] =
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∫ z
z zf(z)dz∫ z
z f(z)dz

, we obtain

VR
i = θ ·

(1− π) + π

(
µ̃+

(∫ zR

0

z̃dF (z̃) +

∫ 1

zR
z̃dF (z̃)

)[
δ
2− π

1− δ
− c

])

1− δ (1− π (1−∆F (zR, zR)))
.

When players follow strategies (R-I) and (R-II), player i’s expected peace payoff at any infor-

mation set in a no-disaster period is θ + δVR
i . On the other hand, i’s expected peace payoff

in a disaster period when the realized asymmetric exposure is zt is z̃tθ + δVR
i .

Step 2 (R-I). Consider an arbitrary disaster period. Strategy (R-I) states that when the

realized asymmetric exposure zt is extreme, the (temporarily) advantaged side attacks the

other. Given that the opponent is playing (R-I) and (R-II), if Wd
i > z̃tθ + δVR

i , it is the best

response for player i to attack the other in a disaster period t after any history. The above

inequality yields

z̃tθ

[
1 + δ(1− π)

1− δ
− c

]
> z̃tθ + δθ ·

(1− π) + π

(
µ̃+

(∫ zR

0

z̃dF (z̃) +

∫ 1

zR
z̃dF (z̃)

)[
δ
2− π

1− δ
− c

])

1− δ (1− π (1−∆F (zR, zR)))

z̃t > δ ·
(1− π) + π

(
µ̃+

(∫ zR

0

z̃dF (z̃) +

∫ 1

zR
z̃dF (z̃)

)[
δ
2− π

1− δ
− c

])

(
1− δ

(
1− π

(
1−∆F

(
zR, zR

)))) [
δ
2− π

1− δ
− c

] .

Recall that z̃t = zt, µ̃ = µ, and Z̃ = Z for Player 1. Hence, the threshold zR above which

Player 1 attacks 2 is given implicitly by

zR = δ ·
(1− π) + π

(
µ+

(∫ zR

0

zdF (z) +

∫ 1

zR
zdF (z)

)[
δ
2− π

1− δ
− c

])

(
1− δ

(
1− π

(
1−∆F

(
zR, zR

)))) [
δ
2− π

1− δ
− c

] .

On the other hand, by z̃t = 1 − zt, µ̃ = 1 − µ, and Z̃ = 1 − Z for Player 2, zR below which
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Player 2 attacks 1 is implicitly characterized by,

zR = 1− δ ·
(1− π) + π

(
1− µ+

(
1−∆F

(
zR, zR

)
−
(∫ zR

0

zdF (z) +

∫ 1

zR
zdF (z)

))[
δ
2− π

1− δ
− c

])

(
1− δ

(
1− π

(
1−∆F

(
zR, zR

)))) [
δ
2− π

1− δ
− c

] .

Solving the system of the two equations for zR and zR determines the thresholds in realized

asymmetric exposure above and below which either one player attacks the other, respectively.

Step 3 (R-II). Finally, consider a no-disaster period. Neither player attacks the opponent

when W¬d
i ≤ θ + δVR

i , i.e.,

1

2

[
2θ(1− c) + δ

θ(2− π)

1− δ

]
≤ θ + δθ

(1− π) + π

(
µ̃+

(∫ zR

0

z̃dF (z̃) +

∫ 1

zR
z̃dF (z̃)

)[
δ
2− π

1− δ
− c

])

1− δ (1− π (1−∆F (zR, zR)))
.

Rearranging this yields

µ̃ ≥ 1− 1

π
+ δ

2− π

1− δ

[
1− δ (1− π (1−∆F (zR, zR)))

2δπ
−
(∫ zR

0

z̃dF (z̃) +

∫ 1

zR
z̃dF (z̃)

)]

−c

[
1− δ (1− π (1−∆F (zR, zR)))

δπ
−
(∫ zR

0

z̃dF (z̃) +

∫ 1

zR
z̃dF (z̃)

)]
.

By
1−δ(1−π(1−∆F (zR,zR)))

2δπ
=

1−F(zR)+F(zR)
2

+ 1−δ
2δπ

, factoring out the second term leads to

µ̃ ≥ 1

2
+ δ

2− π

1− δ

(∫ zR

0

1

2
− z̃dF (z̃) +

∫ 1

zR

1

2
− z̃dF (z̃)

)

−c

(∫ zR

0

1− z̃dF (z̃) +

∫ 1

zR
1− z̃dF (z̃) +

1− δ

δπ

)
,

where µ̃ for which the above expression holds with equality is the threshold value. Recall

Assumption 2. The only moving part when we vary µ or F is one parameter. This constitutes

a necessary condition to solve for µR and µR: for each of these threshold values, we have a
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system of three equations with three unknowns (i.e., zR(µ), zR(µ), and the parameter that

determines the value of µ). If we solve the system of equations, by µ̃ = 1 {i = 1} · µ +

1 {i = 2} (1− µ) and z̃ = 1 {i = 1} · z + 1 {i = 2} (1− z), we obtain the desired result.

A.4 Proof of Proposition 2

Proof. We can prove this proposition in a similar manner to Proposition 1.

Step 1 (Preliminaries). From the proof of Proposition 1, we know players’ expected war

payoffs, i.e., Wd
i and W¬d

i . Let VE
i represent player i’s continuation payoff when both players

are following strategies (E-I) and (E-II):

VE
i =

No-disaster period︷ ︸︸ ︷
(1− π)W¬d

i

+π




Pr(Peace)︷ ︸︸ ︷
∆F

(
zE, zE

) (
E
[
Z̃
∣∣∣Z ∈

[
zE, zE

]]
θ + δVE

i

)

+ F
(
zE
)

︸ ︷︷ ︸
Pr(P2 attacks)

E
[
Z̃
∣∣∣Z < zE

]
θ

[
(1− c) + δ

2− π

1− δ

]

︸ ︷︷ ︸
E[Wd

i |Z<zE]

+
(
1− F

(
zE
))

︸ ︷︷ ︸
Pr(P1 attacks)

E
[
Z̃
∣∣∣Z > zE

]
θ

[
(1− c) + δ

2− π

1− δ

]

︸ ︷︷ ︸
E[Wd

i |Z>zE]




︸ ︷︷ ︸
Disaster period

.

Solving this for VE
i , we obtain

VE
i = θ ·

(1− π)

[
1− δπ/2

1− δ
− c

]
+ π

(
µ̃+

(∫ zE

0

z̃dF (z̃) +

∫ 1

zE
z̃dF (z̃)

)[
δ
2− π

1− δ
− c

])

1− δπ∆F (zE, zE)
.

Step 2 (E-I). Consider an arbitrary disaster period t and suppose that the opponent is

playing strategies (E-I) and (E-II). Then, it is optimal for player i to attack the other when
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Wd
i > z̃tθ + δVE

i . That is,

z̃tθ

[
1 + δ(1− π)

1− δ
− c

]
> z̃tθ + δθ ·




(1− π)

[
1− δπ/2

1− δ
− c

]
+

π

(
µ̃+

(∫ zE

0

z̃dF (z̃) +

∫ 1

zE
z̃dF (z̃)

)[
δ
2− π

1− δ
− c

])




1− δπ∆F (zE, zE)

z̃t > δ ·




(1− π)

[
1− δπ/2

1− δ
− c

]
+

π

(
µ̃+

(∫ zE

0

z̃dF (z̃) +

∫ 1

zE
z̃dF (z̃)

)[
δ
2− π

1− δ
− c

])




(
1− δπ∆F

(
zE, zE

)) [
δ
2− π

1− δ
− c

] .

By z̃t = zt for player 1 and z̃t = 1− zt for player 2, substituting them in the above inequality

yields the thresholds zE and zE.

Step 3 (E-II). Similarly, consider an arbitrary no-disaster period. When the other player

is playing strategies (E-I) and (E-II), it is optimal to attack the other when W¬d
i > θ + δVE

i .

Namely,

1

2

[
2θ(1− c) + δ

θ(2− π)

1− δ

]
> θ + δθ ·




(1− π)

[
1− δπ/2

1− δ
− c

]
+

π

(
µ̃+

(∫ zE

0

z̃dF (z̃) +

∫ 1

zE
z̃dF (z̃)

)[
δ
2− π

1− δ
− c

])




1− δπ∆F (zE, zE)

µ̃ <
1

2
+ δ

2− π

1− δ

(∫ zE

0

1

2
− z̃dF (z̃) +

∫ 1

zE

1

2
− z̃dF (z̃)

)

−c

(∫ zE

0

1− z̃dF (z̃) +

∫ 1

zE
1− z̃dF (z̃) +

1− δ

δπ

)
.

As in the case of Proposition 1, we obtain the desired results by µ̃ = µ and z̃ = z for Player

1 and µ̃ = 1− µ and z̃ = 1− z for Player 2.
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A.5 Proof of Proposition 3

To prove Proposition 3, consider the following lemmas.

Lemma 1. Under Assumption 1, there is no mixed-strategy equilibrium.

Proof. This directly stems from the fact that players are indifferent between pure strategies

in the support of any mixed (equilibrium) strategy. Namely, if a player were to mix attacking

and not attacking at some t, she must be indifferent between the two actions. Assumption 1

assigns “not attack” in this case, which rules out mixed-strategy equilibria.

Lemma 2. The set of values of zt under which a player fights when Dt = 1 constitutes a

one-sided interval.

Proof. We know that Wd
i is monotonic in zt: it is strictly increasing and decreasing for player

1 and player 2, respectively. Let Vi represent a continuation payoff generated by arbitrary

equilibrium strategies. Also recall we have denoted z̃t = 1 {i = 1} · zt + 1 {i = 2} (1− zt).

Then, player i attacks the other in this equilibrium at period t such that Dt = 1 when

z̃tθ

[
(1− c) + δ

2− π

1− δ

]
> z̃tθ + δVi

z̃t >
δVi

θ
[
δ 2−π
1−δ

− c
] .

Note that the continuation payoff Vi is not a function of the current realized damage z̃t.

Hence, whenever δVi

θ[δ 2−π
1−δ

−c]
∈ (0, 1), we can conclude that the set of values of z̃t under which

i fights is

(
δVi

θ[δ 2−π
1−δ

−c]
, 1

]
, which is a one-sided interval.

Lemma 3. Fix all parameters and suppose µ ∈ MR ∩ME ̸= ∅. Then,

zR(µ) ≤ zE(µ) and zE(µ) ≤ zR(µ).
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Proof. Suppose to the contrary that zR(µ) > zE(µ) or zE(µ) > zR(µ). However, recall that,

in cases (E1) and (E2), the vulnerable player will fight for sure in any no-disaster period.

Without loss of generality, consider case (E1). Because Player 1 (the vulnerable one) will

fight once there is no disaster in (E1), Player 2 can profitably deviate by setting a smaller

zE1(µ) not to miss an advantage when there is a disaster, leading to a contradiction. Similarly,

knowing that (i) Player 2 is at least as willing as in (R) to fight in a disaster period and that

(ii) Player 1 will initiate a war without an advantage in any no-disaster period, Player 1 must

be more willing to fight in a disaster period and has a profitable deviation by setting a larger

zE1(µ). This contradicts the assumption that zR(µ) > zE1(µ). Analogous discussions apply

to zE1(µ) ≤ zR(µ).

Lemma 4. Fix all parameters, and suppose µ ∈ MR∩ME ̸= ∅ and that Player i is more vul-

nerable. Then, the expected probability of her victory in war at a disaster period, EZt [p
d
i (Zt)],

is greater in (R) than in (E1) or (E2).

Proof. Without loss of generality, consider case (E1), where Player 1 is the vulnerable one.

Suppose to the contrary that EZt [p
d
1(Zt)] is greater for (E1) than for (R). That is, Player 1

has a better chance of winning in a disaster period under cutoffs zE1 and zE1 than under zR

and zR.

Because we have assumed µ ∈ MR ∩ME, there exist multiple equilibria (in this case, µ ∈
[
µR, µE

)
). The assumption that strategy profile (R) constitutes an equilibrium implies that

Player 1 does not have the incentive to deviate to fighting when Dt = 0, i.e., W¬d
1 ≤ θ+ δVR

1 .

Because strategy profile (E1) also constitutes an equilibrium, we have W¬d
1 > θ + δVE1

1 .

Now consider Player 1’s deviation to a stationary strategy in which she (i) never attacks

Player 2 when Dt = 0 but (ii) still uses cutoff zE for Dt = 1. Denote her continuation value

under this deviation by Vdev
1 . By the assumption (for the sake of contradiction) that Player

1 has a higher (expected) probability of victory in a disaster period under cutoffs zE1 and

56



zE1 , we have VR
1 < Vdev

1 . Consequently, we have established

θ + δVE1
1 < W¬d

1 ≤ θ + δVR
1 < θ + δVdev

1 .

By W¬d
1 < θ+δVdev

1 , Player 1 has the incentive to deviate to the above strategy profile, which

contradicts the assumption that (E1) constitutes an equilibrium. Analogous discussions apply

to the case of (E2).

Lemma 5. Fix parameter values and the functional form of F . Then, we have

µR < µE and µE < µR.

Proof. Focus on µR < µE. Denote VR
1 and VE1

1 when µ = µR by VR
1

(
µR
)
and VE1

1

(
µR
)
. First, we

want to show VR
1

(
µR
)
> VE1

1

(
µR
)
. Then, we show that it is a sufficient condition for µR < µE.

Step 1 (VR
1

(
µR
)
> VE1

1

(
µR
)
). By the definition of µR, recall W¬d

1 = θ + δVR
1

(
µR
)
. Thus,

we have

VR
1

(
µR
)

= (1− π)W¬d
1 + π




∆F

(
zR
(
µR
)
, zR
(
µR
)) (

E
[
Z
∣∣Z ∈

[
zR
(
µR
)
, zR
(
µR
)]]

θ + δVR
1

(
µR
))

+F
(
zR
(
µR
))

E
[
Z
∣∣Z < zR

(
µR
)]

θ

[
(1− c) + δ

2− π

1− δ

]

+
(
1− F

(
zR
(
µR
)))

E
[
Z
∣∣Z > zR

(
µR
)]

θ

[
(1− c) + δ

2− π

1− δ

]




VR
1

(
µR
)

= θ ·

(1− π)W¬d
1 + π


µ+




F
(
zR
(
µR
))

E
[
Z
∣∣Z < zR

(
µR
)]

+
(
1− F

(
zR
(
µR
)))

E
[
Z
∣∣Z > zR

(
µR
)]



[
δ
2− π

1− δ
− c

]



1− δπ∆F

(
zR
(
µR
)
, zR
(
µR
)) .
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Next, observe

VE1
1

(
µR
)

= θ ·

(1− π)W¬d
1 + π


µ+




F
(
zE1
(
µR
))

E
[
Z
∣∣Z < zE1

(
µR
)]

+
(
1− F

(
zE1
(
µR
)))

E
[
Z
∣∣Z > zE1

(
µR
)]



[
δ
2− π

1− δ
− c

]



1− δπ∆F

(
zE1
(
µR
)
, zE1

(
µR
)) .

To compare these two quantities, observe that, by Lemma 3, ∆F

(
zR
(
µR
)
, zR
(
µR
))

>

∆F

(
zE1
(
µR
)
, zE1

(
µR
))
. Hence, the denominator of VR

1

(
µR
)
is smaller than that of VE1

1

(
µR
)
.

Then, the only difference in the numerators is the quantities in the inner parentheses. To

compare them, write Player 1’s expected probability of victory in a disaster period under

strategy profile (R) as, by the law of iterated expectations,

E
[
pd1(Z)

]
= E

[
pd1(Zt)

∣∣War, Z < zR
(
µR
)]

Pr
(
War, Z < zR

(
µR
))

+E
[
pd1(Zt)

∣∣War, Z ∈
[
zR
(
µR
)
, zR
(
µR
)]]

Pr
(
War, Z ∈

[
zR
(
µR
)
, zR
(
µR
)])

+E
[
pd1(Zt)

∣∣War, Z > zR
(
µR
)]

Pr
(
War, Z > zR

(
µR
))

= E
[
pd1(Zt)

∣∣War, Z < zR
(
µR
)]

Pr
(
War

∣∣Z < zR
(
µR
))

︸ ︷︷ ︸
=1 (Player 2 fights)

Pr
(
Z < zR

(
µR
))

︸ ︷︷ ︸
F(zR(µR))

+E
[
pd1(Zt)

∣∣War, Z ∈
[
zR
(
µR
)
, zR
(
µR
)]]

×Pr
(
War

∣∣Z ∈
[
zR
(
µR
)
, zR
(
µR
)])

︸ ︷︷ ︸
=0

Pr
(
Z ∈

[
zR
(
µR
)
, zR
(
µR
)])

︸ ︷︷ ︸
∆F (zR(µR),zR(µR))

+E
[
pd1(Zt)

∣∣War, Z > zR
(
µR
)]

Pr
(
War

∣∣Z > zR
(
µR
))

︸ ︷︷ ︸
=1 (Player 1 fights)

Pr
(
Z > zR

(
µR
))

︸ ︷︷ ︸
1−F(zR(µR))

.

By pd1(Z) = Z, we obtain

E
[
pd1(Z)

]
= F

(
zR
(
µR
))

E
[
Z
∣∣Z < zR

(
µR
)]

+
(
1− F

(
zR
(
µR
)))

E
[
Z
∣∣Z > zR

(
µR
)]

,

which coincides with the quantity in the inner parentheses in the numerator of VR
1

(
µR
)
. Simi-

larly, the analogous quantity in VE1
1

(
µR
)
is F

(
zE1
(
µR
))

E
[
Z
∣∣Z < zE1

(
µR
)]
+
(
1− F

(
zE1
(
µR
)))
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E
[
Z
∣∣Z > zE1

(
µR
)]
, which is also Player 1’s expected probability of victory in a disaster pe-

riod under strategy profile (E1). By Lemma 4, because E [pd1(Z)] is greater under (R), we

have established that the numerator of VR
1

(
µR
)
is greater than that of VE1

1

(
µR
)
. Because the

numerator is greater and the denominator is smaller in VR
1

(
µR
)
, we obtain VR

1

(
µR
)
> VE1

1

(
µR
)
.

Step 2 (µR < µE). Because VR
1

(
µR
)
> VE1

1

(
µR
)
holds, by the definition of µR, we have

W¬d
1 = θ + δVR

1

(
µR
)
> θ + δVE

1

(
µR
)
. Also, because Player 1 strictly prefers fighting to

not fighting at µ = µR under strategy profile (E1), there exists ε > 0 such that W¬d
1 =

θ+ δVE
1

(
µR + ε

)
. By the definition of µE, we write µE = µR+ ε. By ε > 0, we obtain µE > µR.

Analogous discussions apply to µE < µR.

Lemma 6. Fix all parameters other than µ. When µR and µR satisfy

c < min





1

2
− δ

2− π

1− δ

(∫ zR(µR)

0

1

2
− zdFµR(z) +

∫ 1

zR(µR)

1

2
− zdFµR(z)

)

∫ zR(µR)

0

zdFµR(z) +

∫ 1

zR(µR)

zdFµR(z) +
1− δ

δπ

,

1

2
+ δ

2− π

1− δ

(∫ zR(µR)

0

1

2
− zdFµR(z) +

∫ 1

zR(µR)

1

2
− zdFµR(z)

)

∫ zR(µR)

0

zdFµR(z) +

∫ 1

zR(µR)
zdFµR(z) +

1− δ

δπ





,

we have µR > 0 and µR < 1.

Proof. Using expressions in Proposition 1, rearranging inequalities µR > 0 and µR < 1 imme-

diately leads to the condition in the lemma.

Now we are ready to prove Proposition 3.

Proof of Proposition 3. Assumption 1 and Lemma 1 guarantee that, in stationary strategies,

each player either fights for sure or never fights in no-disaster periods. This observation

and Lemma 2 imply that there are only three combinations of equilibrium strategies in our

equilibrium concept (stationary MPE in pure strategies): (i) Neither attacks when Dt = 0;
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(ii) Player 1 attacks when Dt = 0; and (iii) Player 2 attacks when Dt = 0, all with one-

sided intervals of zt under which players fight when Dt = 1. They correspond to strategy

profiles (R) (E1), and (E2), respectively. Lemma 5 shows that there are regions of equilibrium

multiplicity,
[
µR, µE

)
and (µE, µR]. Finally, Lemma 6 implicitly specifies conditions under

which the partition exists in [0, 1].

A.6 Proof of Corollary 1

Proof. By Proposition 1, we have

Pr (Conflict at t such that Dt = 1 in case (R)) = Pr
(
Y game
t = 1

∣∣Dt = 1, µR
)

∈ (0, 1) and

Pr (Conflict at t such that Dt = 0 in case (R)) = Pr
(
Y game
t = 1

∣∣Dt = 0, µR
)

= 0.

Similarly, Proposition 2 yields

Pr (Conflict at t such that Dt = 1 in cases (E1) or (E2)) = Pr
(
Y game
t = 1

∣∣Dt = 1, µE
)

∈ (0, 1) and

Pr (Conflict at t such that Dt = 0 in cases (E1) or (E2)) = Pr
(
Y game
t = 1

∣∣Dt = 0, µE
)

= 1.

which completes the proof.
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A.7 Proof of Corollary 2

Proof. This result follows directly from Bayes’ rule. First, we can rewrite the left-hand side

of the inequality (Pr (µRV ∈ ME|Y game
t = 1, Dt = 0)) as follows.

Pr
(
µRV ∈ ME

∣∣Y game
t = 1, Dt = 0

)

=
Pr (Y game

t = 1, Dt = 0|µRV ∈ ME) Pr (µRV ∈ ME)

Pr
(
Y game
t = 1, Dt = 0

∣∣µRV ∈ ME
)
Pr
(
µRV ∈ ME

)
+

Pr
(
Y game
t = 1, Dt = 0

∣∣µRV /∈ ME
) (

1− Pr
(
µRV ∈ ME

))

=

=1︷ ︸︸ ︷
Pr
(
Y game
t = 1

∣∣Dt = 0, µRV ∈ ME
)

=1−π︷ ︸︸ ︷
Pr
(
Dt = 0

∣∣µRV ∈ ME
)

∈(0,1)︷ ︸︸ ︷
Pr
(
µRV ∈ ME

)

Pr
(
Y game
t = 1

∣∣Dt = 0, µRV ∈ ME
)
Pr
(
Dt = 0

∣∣µRV ∈ ME
)
Pr
(
µRV ∈ ME

)
+

Pr
(
Y game
t = 1

∣∣Dt = 0, µRV /∈ ME
)

︸ ︷︷ ︸
=0

Pr
(
Dt = 0

∣∣µRV /∈ ME
)

︸ ︷︷ ︸
=1−π

(
1− Pr

(
µRV ∈ ME

))
︸ ︷︷ ︸

∈(0,1)

= 1.

Similarly, we have

Pr
(
µRV ∈ ME

∣∣Y game
t = 1, Dt = 1

)

=
Pr (Y game

t = 1, Dt = 1|µRV ∈ ME) Pr (µRV ∈ ME)

Pr
(
Y game
t = 1, Dt = 1

∣∣µRV ∈ ME
)
Pr
(
µRV ∈ ME

)
+

Pr
(
Y game
t = 1, Dt = 1

∣∣µRV /∈ ME
) (

1− Pr
(
µRV ∈ ME

))

=

∈(0,1)︷ ︸︸ ︷
Pr
(
Y game
t = 1

∣∣Dt = 1, µRV ∈ ME
)

=π︷ ︸︸ ︷
Pr
(
Dt = 1

∣∣µRV ∈ ME
)

∈(0,1)︷ ︸︸ ︷
Pr
(
µRV ∈ ME

)

Pr
(
Y game
t = 1

∣∣Dt = 1, µRV ∈ ME
)
Pr
(
Dt = 1

∣∣µRV ∈ ME
)
Pr
(
µRV ∈ ME

)
+

Pr
(
Y game
t = 1

∣∣Dt = 1, µRV /∈ ME
)

︸ ︷︷ ︸
∈(0,1)

Pr
(
Dt = 1

∣∣µRV /∈ ME
)

︸ ︷︷ ︸
=π

(
1− Pr

(
µRV ∈ ME

))
︸ ︷︷ ︸

∈(0,1)

< 1,

which yields the desired result.
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A.8 Proof of Corollary 3

Proof. By Corollary 1 and the identity Y data
dt = DdtY

PO
dt (1) + (1 −Ddt)Y

PO
dt (0), direct substi-

tutions yield part (i) of the statement:

Pr
(
Y game
t = 1

∣∣Dt = 1, µR
)
> Pr

(
Y game
t = 1

∣∣Dt = 0, µR
)

Assumption 4
=⇒ Pr

(
Y data
dt = 1

∣∣Ddt = 1, µR
)
> Pr

(
Y data
dt = 1

∣∣Ddt = 0, µR
)

=⇒ Pr
(
Y PO
dt (1) = 1

∣∣µR
)
> Pr

(
Y PO
dt (0) = 1

∣∣µR
)
.

Part (ii) is derived in the same manner.

A.9 Proof of Corollary 4

Proof. Denote P(E) = min{P(E1),P(E2)}, and denote the CDFs corresponding the two cases

by FR and FE, respectively. Then, P(R) and P(E) are given as

P(R) = (1− π)× 0 + π


 FR

(
zR
)

︸ ︷︷ ︸
Player 2 fights

+1− FR

(
zR
)

︸ ︷︷ ︸
Player 1 fights




P(E) = (1− π)× 1 + π
(
FE

(
zE
)
+ 1− FE

(
zE
))

.

Then, rearranging P(R) < P(E) yields

π
(
1 + ∆FE

(
zE, zE

)
−∆FR

(
zR, zR

))
< 1.

Because ∆FE
(zE, zE)−∆FR

(zR, zR) cannot exceed one for any FR and FE, the above inequality

holds whenever π < 1/2.

62



B Supplementary Information for Empirical Implica-

tions

B.1 Distribution of Water Abundance in Conflict Locations

Recall that Implication 1 predicts the distribution of belligerent group types given a violent

event and the level of water abundance. Namely, if the theory is consistent with real-world

data, then the observation (of a violent event) should be more likely to have the government

as one of the belligerents when water abundance is high (absence of drought).

Figure 8 represents the distribution of the PDSI value for each observation by country.

Higher values in the horizontal axis indicate water abundance (high PDSI scores). The curve

shaded in red represents the case where one of the parties is the government (govdt = 1), and

the blue area denotes non-state-actor dyads (govdt = 0). Intuitively, the theory predicts that

the “red” areas should tend to be located to the right compared to the “blue” areas. This

is because, based on the theory, conflict between groups with asymmetric robustness is more

likely to occur under water abundance (absence of a natural disaster) due to the prevalence

of the preemptive motive.

While the logistic regression at the aggregate level in the main text confirms the con-

sistency of the theory and the data, as Figure 8 shows, I report that there exists variation

by country. For example, the distributions of the PDSI scores of Mauritania, Sierra Leone,

Somalia, and South Africa seem to align with the theory. On the other hand, countries such

as Cameroon, Namibia, and Zimbabwe display patterns inconsistent with the theory.

B.2 Excluding “Extremely Wet” Observations

The PDSI defines scores larger than four as “extremely wet” conditions. Recall that we have

treated observations with larger PDSI scores as cases without a natural disaster (drought).

However, an extremely high value of PDSI can imply other types of climate disasters, such
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Dependent variable: govdt

(1) (2) (3) (4)

PDSId,t−1 ≤ 4 0.024∗∗∗ 0.022∗∗∗ 0.015∗∗

(0.005) (0.005) (0.006)

Distance to capital 0.068∗∗∗ 0.067∗∗∗

(standardized) (0.011) (0.011)

PDSIdt ≤ 4 0.021∗∗∗ 0.012∗

(0.004) (0.005)

Constant 0.747∗∗∗ 0.747∗∗∗ 0.743∗∗∗ 0.749∗∗∗

(0.011) (0.011) (0.011) (0.011)

Observations 41,932 41,932 41,932 41,932

Note: †p < 0.1; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001

Table 3: Results excluding “extremely wet” observations

as storms and floods. Hence, the results in the main text might not appropriately reflect the

theory. To address this issue, I excluded observations with PDSId,t−1 > 4 or PDSIdt > 4 and

used the same logistic regression. As Table 3 shows, we still obtain similar results. Namely,

an event of political violence under water scarcity (i.e., climate disaster) still predicts that

the belligerents constitute a dyad with asymmetric robustness (i.e., the government forces

and nonstate armed groups).
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Figure 8: Distribution of PDSI values in conflict locations by country (red: govdt = 1)
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